Familial chylomicronemia syndrome is rare. Its prevalence is about 1 in 1 million. It is characterized by defective or deficient lipoprotein lipase (LPL) enzyme, severely high triglycerides, and recurrent pancreatitis. Apoprotein C3 antagonizes LPL activity leading to hypertriglyceridemia. Much effort has been done to target Apo C3 pharmacologically. Now we have an anti-sense inhibitor to the hepatic Apo C3 mRNA, called volanesorsen.
This phase 3, double-blind randomized clinical trial shows that volanesorsen lowers both Apo C3 and triglycerides remarkably. Apo C3 is decreased by 25.7 mg/dL and triglycerides by about 1700 mg/dL (Δ80% reduction). Low platelet count and injection site reactions were seen more commonly with volanesorsen than placebo. Although the study was designed to evaluate changes in triglyceride levels, clinical outcomes (pancreatitis) are also expected to improve.
Study findings are of major importance as it provides us with another tool and pathway of lowering elevated triglycerides. Hypertriglyceridemia, commonly found in patients with metabolic syndrome, is a well-established independent risk factor for cardiovascular events. I anticipate that the antisense inhibitor technology will also be tested in patients with metabolic syndrome, insulin resistance, prediabetes, and diabetes; as these conditions are far more prevalent than familial chylomicronemia syndrome.
GT